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TECHNICAL MEMORANDUM

ON THE ANALYTICAL DETERMINATION OF RELAXATION MODULUS OF
VISCOELASTIC MATERIALS BY PRONY'S INTERPOLATION METHOD

INTRODUCTION

When analyzing materials with time dependent mechanical properties, it is of
vital importance that the characterization of such properties be accurately defined.
For viscoelastic materials, properties such as Relaxation Modulus, Creep Compliance,
and time-dependent Poisson's Ratio are of utmost importance for numerical and closed-
form solutions to various problems.

A popular method of obtaining analytical expressions for these properties con-
sists of obtaining discrete values as a function of the logarithm of time and curve
fitting the data to an appropriate expression. Due to the decaying nature of such
properties as Relaxation Modulus and Poisson's Ratio, they are conveniently repre-
sented as a series of exponential functions. A widely used form of these functions is
the so-called Prony series (due to Gaspard Francois Clair Marie Riche de Prony,
1755-1839), which can be expressed as,

n
) =A +Q B e
i=1

Yit

When using expressions such as this for curve fitting it is noted that there are
too many unknowns for the amount of equations available for simultaneous solving.
This generally leads to a trial-and-error approach where values of Y; are assumed,

and an expression for the time-dependent variable is obtained. This process is
repeated until a satisfactory curve fit has been obtained.

The intent of this paper is to demonstrate that with the use of the Intergraph
Interactive Graphics Design System (I.G.D.S.) and its three-dimensional sculptured
surfaces capability the true Prony method can be efficiently used, and the trial and
error approach totally eliminated. This is accomplished by curve fitting the test data
to a third-degree, B-Spline interpolation which can be done quickly and with double
precision accuracy on the I.G.D.S. The resultant curve can then be divided into the
desired number of equally spaced increments of time for the application of Prony's
method. It must be stated at this time that equal time increments are necessary in
order to apply the method properly. It will also be shown that the accuracy of the
results is not compromised by the introduction of the intermediate step of the B-spline
interpolation.

The method is applied in this paper to a solid rocket propellant (TP-H1148) and
a fluorocarbon elastomer commonly used as O-ring material (V-747-75).

The calculations are performed on a Univac 1108 computer and the graphics on
a VAX 780 computer, both with double precision accuracy.




DESCRIPTION OF PRONY'S METHOD

This method is well documented [7,1,6] and will be explained here as a means
of describing the Fortran program PRONY which will solve, without trial and error,
for the exponents Y

Let Prony's equation be of the form

f, =A+2 B e , (1)

where kK = 0,1,2,...n; i =1,2,3,...m; and n > 2m - 1. We first intend to obtain the

value of Yj and then the values of A and Bj. We must remember at this time that:

the successive values of time (abscissa) must form an arithmetic progression, that is
tk = to + kw, where w is the difference between any two successive values of time.

Equation (1) can now be expressed as,

Yi(t0+kw)
f = A+ Bi e . (2)

It is convenient to use the following abbreviations to simplify equation (2),

Yiw
V. =e 3

'Y.t s

_ io
Ci—Bie , (4)

therefore, equation (1) becomes the set of equations

F _ k
f(t)k‘A+Z Vi - - (5)

Willers [7] explains how the process of obtaining the Y; can be simplified by

forming the difference between two successive ordinates in order to conveniently
eliminate A from the approximating equations. As an example, take 4 equidistant
measurements and 3 exponential terms or k = 0,1,2,3 and i = 1,2,3; this will lead to
the following set of equations (5),

¥
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f(,c)1 = A + C1V1 + CyVy + 03V3 (6b)
F _ 2 2 2
f(t)2 = A + Clvl + CZVZ + C3V3 » (6c)
r3 _ 3 3 3
f(t)3 = A + Clvl + CZVZ + C3V3 s (6d)

the differences can be expressed as,

I

Al-O = Cl(Vl-l) + Cz(Vz-l) + C3(V3—1) = f(t)1 - f(t)o (7a)

A2_1 = Cl(Vl-l)V1 + C2(V2-1)V2 + C3(V3-1)V3 = f(t)2 - f(t)1 (7b)
B o=C(Vo-DV. 24 C (V.-1V.2 4+ Co(Vo-DV.2 = F . - F (7e)
3-2 171 1 272 2 373 3 (‘c)3 (1:)2
Bya=C V-1V 3+ cC (v.-0)v.3 + co(v.-)V.3=F. - F (7d)
4-3 1V'1 1 2" 2 2 3*° 3 3 (t)4 (t)3 *
If we let the values of Vi be the roots of the equation
m m-1 m-2 -
Vv +SIV‘ +S2V +"'+Sm‘—1V+Sm—0 (8)
then we can solve for the values of Y; from equations (3) or
=1 10 v (9)
iTw %8 Yy -

When trying to interpolate with three or more exponential terms [m > 3 in equa-
tion (1)] there is the possibility of encountering complex roots Vi' This by no means

precludes successful curve fitting. It does, however, change the final form of equa-
tion (1) thus forcing the analyst to utilize an expression with a combination of expo-
nential and harmonic terms [1,7]. On the other hand, if the value of Vi is a negative

3



real value then equation (9) becomes unsolvable due to the fact that the natural
logarithm of a negative number is undefined. Fortunately, it has been found that
impressive accuracy can be obtained, for the materials in question, by using 2 expo-
nential terms in equation (1), precluding the necessity for value of m greater than 2.
Our problem now becomes that of obtaining the values of the Si in equation (8).

Equations (7) can exist simultaneously if we write

A S, + A

1-0 S3 =0

(10)

If we have a total of n+l data points and m exponential terms in the Prony series, we

can obtain a total of n-m+1 equations of the form (10) or

b1-0 Sm * Lo 1 Spor t eer F Apygyop = O
Bo-18m T 83981 % oo Bipigy (me1y = O
Ao St B3 Spg T oot Amigy-(men) = O (a1
Aarmiy--m) Sm t An-me2)-(nemtl) Sme1 o T Apineny 0 -
Equations (11) can readily be expressed in matrix form as
[ i i 1 s
1-0 2-1 (m+1)-m m
bo1 3.9 A (m+2)-(m+1) Sm-1} =0 (12
_A(n-m+1)—(n—m) A(n—m+2)—(n—m+1) An—(n-l) i 1
or simply
[§]1 {S} =0 (13a)

where the § matrix contains the Zk—(k—l) coefficients and, in this case, k = 1,2,3...n.

We can express (13a) in tensor notation as

(13b)



q=1,2,3 ... n-m+l

r=1,2,3 ... mtl >

in this manner we have 611 = A0 899 = Ag_ 9, €tc. From equations (13) we can

form a set of normal equations [1,7] by the method of least squares which written in
matrix form are

[a] {S} = {e} . (14a)

In the tensor notation we have

OLj'Q/ SQ = e]. (14b)
where
j.2 =1,2,3, ... m
and
n-m+l
o, = 2: qugql (15)
q=1
n-m+l
S TD DR (19
q=1

where p = m+1.

Once the aij and ej are obtained, equation (14a) can be solved for {S} by
premultiplying both sides of the equation by the inverse of [a] or

1

{8} =[a] ~ {e} . (1D

Equation (8) can now be solved for the Vi and from equation (9) the exponents Y; can
be obtained.




COMPUTER IMPLEMENTATION

Table 1 is the listing of the FORTRAN program PRONY implementing the Prony
method. The program reads the Xy and V> in this case time and Relaxation Modulus,

and forms the o matrix. It is then inverted by means of the Gauss-Jordan reduction

method and the values of S are obtained as in equation (17).

Once the Si are obtained, then the Y; can be obtained. It is then a simple stepft

more to solve for the constants A and Bi by means of the least-squares method.

TABLE

1'

FORTRAN PROGRAM PRONY

PEDROBIN197*ME799( 1) . PRONY

CONONDWN =

10
11
12
13
14
15
i6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3t
32
a3
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
63
54
55
56
57
S8
59
60
61
62
63

©BRKPT PRINTS

100
10

12

14

400
18

6

-

700
19

PARAMETER N=32,M=2 NM1=N-1{ ,MP{=M+1,M2=2+M
PARAMETER NM1M=NM1-M M2P2=2+M+2,M4P4=4+M+4
DIMENSION JC(12)

DOUBLE PRECISION ROOT(M2P2),AA(M2P2),BB(M2P2)

DOUBLE PRECISION CC(M4P4),W,GAM,GAMMA
DOUBLE PRECISION V(2),S(MP1)

DOUBLE PRECISION E(N),T(N),DIFF(NM1),DELTA(NMIM, MP1)

DOUBLE PRECISION ALPHA(M,MP1),EPS(M)
DO 10 K=1,N

READ(S, 100)T(K),E(K)
WRITE(10,100)T(K) ,E(K)
FORMAT ()

CONT INUE

DO 11 K=1,NM1

KP1=K+1
DIFF(K)=E(KP1)-E(K)
CONT INUE

DO 12 I=1,NM1IM

DO 12 J=1,MP1

JU=sI+d-1
DELTA(I,J)=DIFF(JJ)
CONT INUE

DO 14 I=1,M

DO 14 J=1,M
ALPHA(I,J)=0.0

DO 14 K=1,NMiM

ALPHA(I,J)=ALPHA(T ,J)+DELTA(K,I)+*DELTA(K,J)

CONTINUE

00 15 I=1,M

EPS(1)=0.0

D0 15 J=1 ,NMiIM
EPS(T)=EPS(I)+DELTA(J,I)+DELTA(J,MP1)
CONT INUE

DO 16 I=1.,M

ALPHA(I,MP1)=-1.0+EPS(I)

CONT INUE

v(t)=4.0

CALL DGUR(ALPHA ,MP1,M,M ,MP1,$300,UC,V)
WRITE(6,301)uC(1)

FORMAT(’ SYSTEM SOLVED UP TO EQUATION NO.
s{1)=1.0

DO 17 I=t.,M

J=M-1+2

S(U)=ALPHA(I,MP1)

CONT INUE

PO 18 I=1,MP1
WRITE(6,400) 1,S(I)

FORMAT(’ S(’,12,’)=’,£20.6)
CONT INUE

TOL=1.D-16

CALL ROOTZ(S,M,ROOT,AA,BB,CC,TOL)
WRITE(6,61)(ROOT(1),131,M2)
FORMAT (20X, ‘ROOT’,5X,2E30.8)
W=T(3)-T(2)

DO 19 I=t,M

NN=2+I-1

GAM=ROOT (NN)
GAMMA=(DLOG(GAM) ) /w
WRITE(6,700)GAMMA

FORMAT (20X, EXPONENT * ,E30.8)
CONT INUE

sTOP

END

‘.13//7)
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NUMERICAL EXAMPLES

TP-H1148 SRM Propellant

Figure 1 shows a plot of the
from a stress relaxation test [2].
1.65958E-3 to 1.65958E+1 min.

be plotted in real time and then divided into equal time increments, w.

Relaxation Modulus versus log of time as obtained
As can be seen, the time range extends from

In order to properly apply this method, this data must

This would be

close to an impossible task unless performed on a graphics computer with the capabili-

ties of I.G.D.S.

20.00 |- N e R R poeoeri- TP—H1148 PROPELLANT RELAXATION MODULUS

AS MEASURED TEST DATA AT —30°F AND 2% STRAIN |

15.00

MODULUS
KSi

10.00

RELAXATION

-2.28

~1.78 -1.28 -0.28 0.22 0.72 122
LOG OF TIME IN MINUTES
Figure 1. TP-H1148 Relaxation Modulus.

As can be seen in Figure 2a, we have plotted seven of the nine data points
presented in Figure 1. This is done in order to show with clarity the shape of the
curve, even though all nine points are used when performing the B-Spline interpola-
tion shown in Figure 2b. As can be seen, the greatest relaxation occurs during the
first 0.020 min of the test, and therefore we shall concentrate on this portion of the
curve,

By "zooming-in" to the portion of interest, we can take increments of time of
0.001 min. Figure 3 shows the portion between 0.002 and 0.020 min of Figure 2b.
The 1.G.D.S. can accurately locate the intersection between the B-Spline curve and
the time increments to yield values of Relaxation Modulus, E(t), at each intersection.
These values can be read directly off the screen and tabulated as in Table 2. This
is the basic information required in order to run PRONY.
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Figure 3.

2 since at m > 3 we have encountered complex values

By inputing the data from Table 2 into our program we obtain the following

Equation (1) shows the general form of the Prony series used in our discussion.

g
(]
X
2]
-~
[}
n}
)
Q
—
[}
—
o
£
<
]
[}
0w
er=d
Lo
= e
o P
O g
v o

(18)

V2 - 0.822591 V + 0.095196 = 0

form of equation (8):

where,

-0.822591

9 = 0.095196

Sy
S

The solution of equation (18) yields the following roots




TABLE 2. TP-H1148 PROPELLANT RELAXATION MODULUS

TIME E (t)
(MINUTES) (Ksl)

.002 ’ 20.3704
.003 18.1835
.004 16.0257
.005 14.4590
.006 13.3989
.007 12.6508
.008 12.1197
.009 11.7508
.010 11.5090
011 11.3706
012 11.2952
.013 11.2244
014 11.1563
.015 11.0909
016 11.0282
017 10.9683
.018 10.9112
.019 10.8569
.020 10.8056

V, = 0.6832668 (19a)

V, = 0.1392342 (19b)

Substitution of equations (19) into equations (9) yield the values of the required
exponential term constants.

1

Y1 = 57007 108, 06832668 = -380.8698 (20a)
= 1 -
Yo = 00T 108, 0-1393242 = -1971.8239 (20p)

We can now rewrite our Prony equation as

e-380.8698 t, e-1971.8239 t

E(t) = A + B1 B2 (21)

10



time in minutes, and A, B, and Bg are constants to be determined by the
These constants are,

method of least-squares [5].

where t

(223)

A = 10973.3

(22b)

B, = 23397.3

(22c)

B2 = -79056.7
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V-747-75 Fluorocarbon O-Ring Material

Figure 5 shows a plot of the Relaxation Modulus versus log! of time as obtained
from a stress relaxation test [4]. Once again the time range extends from 1.65958E-3
to 1.65958E+1 min. The same procedure as for the TP-H1148 solid propellant is
followed in order to obtain values of E(t) as a function of equal time increments w.
Figures 6a and 6b are plots of actual data points and B-Spline interpolation, respec-

tively. .

5000

4000 V-747-75 FLUOROCARBON O-RING
MATERIAL AS MEASURED TEST DATA
AT 30°F AND 2% STRAIN

3000

RELAXATION
MODULUS
(PSI)

2000

1000

0
-2.78 -2.18 -1.78 -1.38 -1.08 -0.90 -0.78 0.22 1.22

LOG OF TIME IN MINUTES
Figure 5. V-747-75 Relaxation Modulus.

For this example we shall take equal increments of time of 0.0025 min and
-analyze the portion of the curve that extends to 0.0800 min. Figure 7 shows the
equal time increments, and Table 3 shows their respective values of Relaxation Modulus
as obtained from the I.G.D.S. With this information we are again ready to run PRONY.

Again we have found that for m > 3 we encounter complex wvalues of Vi ; there-
fore, for m = 2 we obtain the following form of equation (8).

V2 _ 1.14458 V + 0.255224 = 0 (23)
with

S, = -1.14458

S, = 0.255224
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TABLE 3. V-747-75 FLUOROCARBON O-RING MATERIAL RELAXATION
MODULUS AS OBTAINED FROM FIGURE 7, FOR TIME BETWEEN
0.0025 AND 0.0800 MINUTES

TIME E (1)
(MINUTES) (KS1)
.0025 3977.9
.0050 3317.1
.0075 3032.1
.0100 2873.1
0125 2772.4
.0150 2687.4
.0175 2613.8
.0200 2551.3
.0225 2499.9
0250 2459.7
0275 24305
.0300 24116
.0325 2395.4
.0350 2379.8
.0375 2364.8
.0400 2350.4
0425 2336.6
.0450 2323.6
.0475 2310.7
.0500 2298.7
0525 2287.2
.0550 2276.4
.0575 2266.1
.0600 2256.4
.0625 2247.3
.0650 2238.7
.0675 2230.6
0700 2222.8
.0725 22155
.0750 2208.1
0775 2202.1
.0800 2196.1

15




The roots of equation (23) are

V1 0.84113 (24a)

1!

V2 0.30345 (24b)

The required exponential constants are obtained from equation (9) as

|
1

-69.204 (25a)

==

- 1
Yy = loge V1 = 00095 1oge 0.84113

loge 0.30345 = -477.017 (25b)

1
log, Vy = 570025

gl=

Yo =

Our Prony equation for the V-747-75 material during the range 0.0025 < t < 0.0800
is now '

_ A+ B, o69.204t

B o 477.017t
(1) 1 2 ©

E (26)

The constants A, B, and By can be determined by the method of least squares [5],

A = 2239.88 (27a)
B1 = 1247.08 (27b)
B2 = 2253.44 (27c)

Figure 8 shows a plot of equation (26) as compared to the B-Splined experimental
data. Again a good correlation between the data and the curve fit is seen.

DISCUSSION OF RESULTS

Tables 4 and 5 show the comparison between the test data and the results from
PRONY. We can see in both cases that there is very good accuracy between test
points and curve fit points as long as we maintain ourselves between the time range
under study or as determined by Tables 2 and 3. In both cases the value of E(t)
departs from the actual values as soon as we leave the time range under study. At
the beginning of the time range this problem can be overcome by extrapolating the
the test data on to t = 0 [or t = 0.00001 min to avoid numerical problems when plotting
Log(t)]. At the end of the time range the accuracy can be maintained by including
as many time points as required for a specific analysis.
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TABLE 4. TP-H1148 RESULT COMPARISON CHART

Relaxation Modulus (ksi) (0.002 < t < 0.020)

Time (min) Test Data B-Spline PRONY
0.00166 21.114 21.114 20.412
0.00661 12,913 12.913 12.861
0.01666 10.992 10.992 11.014
0.04168 10.144 10.144 10.973

TABLE 5. V-747-75 RESULT COMPARISON CHART

Relaxation Modulus (psi)
(0.0025 < t < 0.0800)

Time (min) Test Data B-Spline PRONY
0.00166 4247.00 4247.00 2636.05
0.00611 3113.00 3113.00 3179.15
0.01666 2639.00 2639.00 2634.39

" 0.04168 2341.00 2341.00 2309.58
0.08318 2189.00 2189.00 2243.82

Another point of interest is that if any of the roots of equation (8) are negative
we will not be able to solve equation (9) for that particular Y4 since the natural

logarithm of a negative number is undefined. A method to overcome this problem has
not been addressed by any available source on the implementation of Prony's method
[1,6,7]. It is the author's belief that due to the nature of equation (9) we must
require that the values of Vi meet the following requirements:

1. Al Vi shall be positive real values or complex conjugates.

2. If the data to be curve fitted is of a decaying nature as a function of time,
the Vi must be less than 1.00 except for complex conjugate values.

3. If the data has increasing values of the ordinate with increasing time, then
the Vi must be greater than zero, with at least one greater than 1, except for com-

plex conjugate values.
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CONCLUSIONS

A very good tool for the analytical determination of functions which can be
represented by a series of exponential terms is available. The method, when utilized
properly, can provide the analyst accurate expressions of the ordinate in question.
Although the method leaves the unanswered question of what to do when Vi is a real

negative number, the author feels that enough accuracy for materials such as elas-
tomers and solid propellants can be obtained to perform an accurate stress and strain
analysis of these materials under load.
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APPENDIX A

CURVE FITTING PRONY'S EQUATION BY THE METHOD OF LEAST SQUARES

After obtaining the values of the Y exponents, Prony's equation (1) can be

solved for the A and B; constants from the data points by using the method of least
squares [5,7].

The method, due to Legendre, is applied to Prony's equation as follows. Let
Prony's equation be

n
— vt
F(t) = A + }: B, e 1 i (A-1)

i=1

If we want to approximate a curve with f(t) as its discrete data points, we can
express a deviation for the argument value of t as,

8, = f'(t)m - £(1), (A-2)

where m = 1,2,3,...,k and k is the total number of data points. The sum of the
squares of all the deviations is expressed as,

N |
2 s 2 (A-3)

m=1

k
_ iy _ 2
D=, (b, - fb,)
m=1
If we substitute equation (A-1) into equation (A-3), we obtain,
k Y
_ i'm _ 2 _
D= (A+) B e ORI (A-9)
m=1

The method of least squares requires that equation (A-4) be a minimum. In order for
this to be true it is necessary that

3D _ 3D
3A BBi

=0 . (A-5)

From equations (A-5) and (A-4) we can write,
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k n 3 :
vt af (t)
732 Z +D Bie M- f(t) ) —5 2 =0 (A-6)
m= i=1
k n yat _ :
% oD Z +3 Bie ™. f(t) ) 33fB(jt) =0 (A-T)
m=1 i=1

where j = 1, 2, 3...n.

Equation (A-7) constitutes a set of n equations or one equation for each expo-
nential term. These latter two equations can be rewritten as

k n k = =
af(t) Yit, 3R pE(t)
A2 P2 B DL e T gt = 2y (A-8)
m=1 i=1 m=1
k n k k y
s f(t) af(t) af(t)
AY m+ZBIZ i'm =) W, —p 2. (A-9)
m=1 i=1  m=1 . m=1 ]

For the purpose of writing a computer program that will solve for the constants A and
B]-, equations (A-8) and (A-9) may be expressed in matrix form as follows,

[C] {A} = {F} (A-10)

where the vector {A} holds the sought unknowns A and BJ and the coefficients of [C]
and {F} are defined as follows,

k —
2 f(t)
— m _ ~
€117 2, x> =k (A-11)
m=1
k —
v: <t 9f(t)
_ i-1'm m _
oy - X o D 412
m=1
k —
3f(t)
— m -
Ciy = 2 3B, (A-13)
m=1

22



k -
v: <t 9f(t)
_ i-1'm m _
Ci = 2. e 5B (A-14)

m=1 -1

For equation (A-14) only we have

i=j=2, 3, ... kil (A-152)

i=1,2,3, ...k . (A-15b)

The coefficients of the vector {F} are defined as,

k 2 ()
T DY (a1
m=1
k -
3 F(t)
F, = Z £(4) —,C)—B——‘fl (A-17)
) i-1

and in this case the i is defined as in equation (A-15a).

Once the C and F coefficients are properly identified, both sides of equation
(A-10) can be premultiplied by the inverse of [C] to obtain the solution vector {A}
or,

1

{A} = [C] ~ {F} (A-18)

Table A-1 shows a printout of the program CFIT applying the method described above.
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TABLE A-1. FORTRAN PROGRAM CFIT

PEDROBIN197*ME799( 1) .CFIT

[
C

10

100
1"

20

30

40

50

60

300
301

70

102

80

101

80

PARAMETER K=2,KP{=K+1,KP2=K+2
PARAMETER M=33,VAL=100.,MM=100
DIMENSION JC(12),E(M),T(M)
DOUBLE PRECISION B(K),F(KP1),C(KP1,KP2),PRONY(MM)
DOUBLE PRECISION V(2),MOD(MM)
DOUBLE PRECISION TT(MM+1),R(K)
INITIALIZE MATRIX AND VECTOR

DO 10 N=1,KP1 L
F(N)=0.0 N
DO 10 L=1,KP2 h
C(N,L)=0.0
CONTINUE )
R(1)=118.159 N
R(2)=661.228

R(3)=415.608

R(4)=500.
DO 11 I=1,M
READ(5,100)7(1),E(I)

FORMAT()

CONTINUE

C(1,1)=1.0«M
DO 20 N=2,KP1
D0 20 I=1,M

C(1,N)=C(1,N)+EXP(-R(N-1)*T(1))

C(N, 1)=C(N,1)+EXP(-R(N-1)*T(I))
CONTINUE
DO 30 JU=2,KPt
DO 30 N=2,KP1
DO 30 I=1,M
C{U.,N)=C(J,N)+EXP(-R(N-1)*T(I))*EXP(-R(J-1)*T(I))
CONTINUE
DO 40 I=1,M

F(1)=F(1)+E(1)

CONTINUE
DO 50 N=2,KP{
DO 50 I=1,M

F(N)=F(N)+E(I)*EXP(-R(N-1)*T(I))

CONTINUE
DO 60 N=1,KP1
C(N,KP2)=F(N)
CONTINUE

v(1)=4.0
CALL DGUR(C,KP2,KP1,KP1,KP2,$300,JC,V)
WRITE(6.301)JC(1)

FORMAT(‘ SYSTEM SOLVED UP TO EQUATION NO.’,13//)
A=C(1,KP2)

DO 70 N=2,KP1

B(N-1)=C(N,KP2)

CONTINUE
WRITE(6,102)A,B(1),B(2),B(3)

FORMAT( 10X, 4E15.6)

TMAX=T (M)

TMIN=T(1)
DO 80 I=1,MM

PRONY(I)}=0.0
CONT INUE
XINC=(TMAX-TMIN)/VAL

TT(1)=TMIN
DO 90 I=1,MM

D0 101 N=2,KP1

PRONY (I )=PRONY(I)+B{N-1)+EXP(-R(N-1)*TT(I))
CONTINUE

MOD(I)=A+PRONY(I)

TT(I+1)=TT(1)+XINC

CONTINUE 3
ARG=TMIN

¥1=0.0

¥2=0.0

ARG1=0.0

DO 110 I=1,MM R
WRITE(Q)ARG1T,Y1,Y2

ARG1=ALOG10(ARG)

CALL INTRP5(ARG,T,E,M,2,Y1,N)

¥2=MOD(1)

ARG=ARG+XINC

WRITE(6, 105)ARG,Y1,YQ

105 FORMAT(10X,3E20.6)
110 CONTINUE

sTOP
END
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